Poster Schedule

Tuesday

All papers from Sessions I, II & III will present a poster in this slot. Additionally the following non-archival content will be presented:

  • MetaARIMA: Automatic Configuration of ARIMA using Classifier Chains
  • Quickly Tuning Foundation Models for Image Segmentation
  • A Preliminary Evaluation of Large Language Models for Data Science Code Generation
  • Cost-aware Stopping for Bayesian Optimization
  • Stitching Disparate Neural Network Layers with Complex Adapters and Spatial Rescaling
  • Successive Halving with Learning Curve Prediction via Latent Kronecker Gaussian Processes
  • Improved Gaussian Process Hyperparameter Fitting for Bayesian Optimization
  • LISTEN to Your Preferences: An LLM Framework for Multi-Objective Selection
  • Cost-aware Bayesian Optimization via the Pandora’s Box Gittins Index
Wednesday

All papers from Sessions IV & V will present a poster in this slot. Additionally the following non-archival content will be presented:

  • Quantifying Module Interactions in the PSO-X Framework
  • Bayesian Optimisation Against Climate Change: Applications and Benchmarks
  • Zero-Cost Benchmarks: Towards Lower Reliance on Spearman Rank Correlation
  • Stress Testing Classifiers around the Decision Boundary with Latent Diffusion
  • The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
  • Tune My Adam, Please!
  • Multi-objective Hyperparameter Optimization in the Age of Deep Learning
  • How Usable is Automated Feature Engineering for Tabular Data?
  • Automated Data Preparation for Machine Learning
  • Surrogate Benchmarks for Model Merging Optimization
  • ParticleML: AutoML Through Electromagnetic Physics Simulation
  • Prometheus: A Recursively Self-Improving NAS System
  • Data-Efficient Ranking of Recommendation Models
  • Object-Flow Machine Learning: Active learning framework utilizing protocols information
  • Algorithm Configuration for Structured Pfaffian Settings
Online Only (September 25th, 8:00 – 12:00 EST)

For information about the online post-conference gathering please checkout  this page.

  • ReLU is all you need for NASWOT
  • Towards Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
  • Towards Exploiting Early Termination for Multi-Fidelity Hyperparameter Optimization

Accepted Non-Archival Content

Papers marked with ๐Ÿ›œ will be presented online only in the  virtual post-conference gathering.

๐ŸŽจ Non-traditional content
๐Ÿ”ฅ Hot-of-the-press
๐Ÿ“” Short papers

  • ๐ŸŽจ Conversational AutoMLOPs
    Paulito Pedregosa Palmes
    OpenReview
  • ๐Ÿ“” MetaARIMA: Automatic Configuration of ARIMA using Classifier Chains
    Vitor Cerqueira, Ricardo Inรกcio, Carlos Soares
    OpenReview
  • ๐Ÿ›œ๐Ÿ“” Towards Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
    Lukas Fehring, Maximilian Spliethรถver, Marcel Wever, Henning Wachsmuth, Marius Lindauer
    OpenReview
  • ๐Ÿ”ฅ Algorithm Configuration for Structured Pfaffian Settings
    Maria Florina Balcan, Anh Tuan Nguyen, Dravyansh Sharma
    OpenReview
  • ๐Ÿ“” Quickly Tuning Foundation Models for Image Segmentation
    Breenda Das, Lennart Purucker, Timur Carstensen, Frank Hutter
    OpenReview
  • ๐Ÿ“” A Preliminary Evaluation of Large Language Models for Data Science Code Generation
    Farshad Ghorbanishovaneh, Lars Kotthoff
    OpenReview
  • ๐Ÿ“” Cost-aware Stopping for Bayesian Optimization
    Qian Xie , Linda Cai, Alexander Terenin, Peter I. Frazier, Ziv Scully
    OpenReview
  • ๐Ÿ“” Stitching Disparate Neural Network Layers with Complex Adapters and Spatial Rescaling
    Neil Traft, Nick Cheney
    OpenReview
  • ๐Ÿ›œ๐Ÿ“” ReLU is all you need for NASWOT
    Prit Kanadiya, Raghav Agarwal, Om Doiphode, Sandip Shingade
    OpenReview
  • ๐Ÿ“” Successive Halving with Learning Curve Prediction via Latent Kronecker Gaussian Processes
    Jihao Andreas Lin, Nicolas Mayoraz, Steffen Rendle, Dima Kuzmin, Emil Praun, Berivan Isik
    OpenReview
  • ๐Ÿ“” Improved Gaussian Process Hyperparameter Fitting for Bayesian Optimization
    Bobby Huggins, Roman Garnett
    OpenReview
  • ๐Ÿ“” LISTEN to Your Preferences: An LLM Framework for Multi-Objective Selection
    Adam Jovine, Tinghan Ye, David Shmoys, Peter I. Frazier
    OpenReview
  • ๐Ÿ›œ๐Ÿ“” Towards Exploiting Early Termination for Multi-Fidelity Hyperparameter Optimization
    Helena Graf, Lukas Fehring, Tanja Tornede, Alexander Tornede, Marcel Wever, Marius Lindauer
    OpenReview
  • ๐Ÿ“” Quantifying Module Interactions in the PSO-X Framework
    Christian Leonardo Camacho-Villalรณn, Ana Nikolikj, Katharina Dost, Eva Tuba, Saso Dzeroski, Tome Eftimov
    OpenReview
  • ๐Ÿ”ฅ Bayesian Optimisation Against Climate Change: Applications and Benchmarks
    Sigrid Passano Hellan, Christopher G. Lucas, Nigel H. Goddard
    OpenReview
  • ๐Ÿ“” Zero-Cost Benchmarks: Towards Lower Reliance on Spearman Rank Correlation
    Timotรฉe Ly-Manson, Mathieu Lรฉonardon, Abdeldjalil Aissa El Bey 
    OpenReview
  • ๐Ÿ”ฅ Cost-aware Bayesian Optimization via the Pandora’s Box Gittins Index
    Qian Xie, Raul Astudillo, Peter I. Frazier, Ziv Scully, Alexander Terenin
    OpenReview
  • ๐Ÿ“” Stress Testing Classifiers around the Decision Boundary with Latent Diffusion
    Inรชs Gomes, Andrรฉ Restivo, Moisรฉs Rocha dos Santos, Carlos Soares, Jan N. van Rijn, Luis Filipe Teixeira
    OpenReview
  • ๐Ÿ”ฅ The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
    Ziv Scully, Alexander Terenin
    OpenReview
  • ๐Ÿ“” Tune My Adam, Please!
    Theodoros Athanasiadis, Steven Adriaensen, Samuel Mรผller, Frank Hutter
    OpenReview
  • ๐Ÿ“” Multi-objective Hyperparameter Optimization in the Age of Deep Learning
    Soham Basu, Danny Stoll
    OpenReview
  • ๐Ÿ“” How Usable is Automated Feature Engineering for Tabular Data?
    Bastian Schรคfer, Lennart Purucker, Maciej Janowski, Frank Hutter
    OpenReview
  • ๐ŸŽจ Automated Data Preparation for Machine Learning
    Sasa Mladenovic, Marius Lindauer, Carola Doerr
    OpenReview
  • ๐Ÿ“” Surrogate Benchmarks for Model Merging Optimization
    Rio Akizuki, Yuya Kudo, Nozomu Yoshinari, Yoichi Hirose, Toshiyuki Nishimoto, Kento Uchida, Shinichi Shirakawa
    OpenReview
  • ๐ŸŽจ ParticleML: AutoML Through Electromagnetic Physics Simulation
    Arya Manjaramkar
    OpenReview
  • ๐Ÿ“” Prometheus: A Recursively Self-Improving NAS System
    Alex Zhang, Hui Liu
    OpenReview
  • ๐Ÿ“” Data-Efficient Ranking of Recommendation Models
    Berivan Isik, Matthew Fahrbach, Dima Kuzmin, Nicolas Mayoraz, Emil Praun, Steffen Rendle, Raghavendra Vasudeva
    OpenReview
  • ๐ŸŽจ Object-Flow Machine Learning: Active learning framework utilizing protocols information
    Yusuke Ozaki, Kazunari Kaizu, Koichi Takahashi
    OpenReview