Presentation Schedule

Session I (Monday)
  • AutoPDL: Automatic Prompt Optimization for LLM Agents
    Claudio Spiess, Mandana Vaziri, Louis Mandel, Martin Hirzel
    OpenReview –  PDF
  • Hyperparameter Optimization via Interacting with Probabilistic Circuits
    Jonas Seng, Fabrizio Ventola, Zhongjie Yu, Kristian Kersting
    OpenReview –  PDF
  • Feasibility-Driven Trust Region Bayesian Optimization
    Paolo Ascia, Elena Raponi, Thomas Bäck, Duddeck
    OpenReview –  PDF
  • Transferrable Surrogates in Expressive Neural Architecture Search Spaces
    Shiwen Qin, Gabriela Kadlecová, Martin Pilát, Shay B Cohen, Roman Neruda, Elliot J. Crowley, Jovita Lukasik, Linus Ericsson
    OpenReview –  PDF
Session II (Tuesday)
  • CAPO: Cost-Aware Prompt Optimization
    Tom Zehle, Moritz Schlager, Timo Heiß, Matthias Feurer
    OpenReview –  PDF –  YouTube
  • Fast Bayesian Optimization of Function Networks with Partial Evaluations
    Poompol Buathong, Peter I. Frazier
    OpenReview –  PDF
  • CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
    Jacob O Tørring, Carl Hvarfner, Luigi Nardi, Magnus Själander
    OpenReview
     –  PDF
Session III (Tuesday)
  • Obeying the Order: Introducing Ordered Transfer Hyperparameter Optimization
    Sigrid Passano Hellan, Huibin Shen, Francois-Xavier Aubet, David Salinas, Aaron Klein
    OpenReview –  PDF
  • Iterative Monte Carlo Tree Search for Neural Architecture Search
    Mehraveh Javan Roshtkhari, Matthew Toews, Marco Pedersoli
    OpenReview –  PDF
  • Ax: A Platform for Adaptive Experimentation
    Miles Olson, Elizabeth Santorella, Louis C. Tiao, Sait Cakmak, Mia Garrard, Samuel Daulton, Zhiyuan Jerry Lin, Sebastian Ament, Bernard Beckerman, Eric Onofrey, Paschal Igusti, Cristian Lara, Benjamin Letham, Cesar Cardoso, Shiyun Sunny Shen, Andy Chenyuan Lin, Matthew Grange, Elena Kashtelyan, David Eriksson, Maximilian Balandat, Eytan Bakshy
    OpenReview
     –  PDF
  • syftr: Pareto-Optimal Generative AI
    Alexander Conway, Debadeepta Dey, Stefan Hackmann, Matthew Hausknecht, Michael Douglas Schmidt, Mark Lewis Steadman, Nick Volynets
    OpenReview –  PDF – YouTube
Session IV (Wednesday)
  • confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
    Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
    OpenReview –  PDF
  • PiML: Automated Machine Learning Workflow Optimisation using LLM Agents
    Abhishek Chopde , Fardeen Pettiwala, Sankar Kirubananth, Sai Kiran Botla, Pachipulusu Ayyappa Kethan
    OpenReview –  PDF
  • What Makes Freezing Layers in Deep Neural Networks Effective? A Linear Separability Perspective
    Collin Coil, Nick Cheney
    OpenReview –  PDF – YouTube
Session V (Wednesday)
  • Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
    Timur Carstensen, Neeratyoy Mallik, Frank Hutter, Martin Rapp
    OpenReview –  PDF
  • Multi-layer Stack Ensembles for Time Series Forecasting
    Nathanael Bosch, Oleksandr Shchur, Nick Erickson, Michael Bohlke-Schneider, Ali Caner Turkmen
    OpenReview –  PDF
  • Revisiting Learning Rate Control
    Micha Henheik, Theresa Eimer, Marius Lindauer
    OpenReview –  PDF
  • Regularized Neural Ensemblers
    Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka
    OpenReview –  PDF
  • Auto-nnU-Net: Towards Automated Medical Image Segmentation
    Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer
    OpenReveiw –  PDF
Online Only (September 25th, 8:00 – 12:00 EST)

For information about the online post-conference gathering please checkout  this page.

  • AutoML Algorithms for Online Generalized Additive Model Selection: Application to Electricity Demand Forecasting
    Keshav Das, Julie Keisler, Margaux Brégère, Amaury Durand
    OpenReview –  PDF
  • Overtuning in Hyperparameter Optimization
    Lennart Schneider, Bernd Bischl, Matthias Feurer
    OpenReview –  PDF
  • EG-ENAS: Efficient and Generalizable Evolutionary Neural Architecture Search for Image Classification
    Mateo Avila Pava, René Groh, Andreas M Kist
    OpenReview –  PDF –  YouTube
  • The Ranking Trick: A Simple and Robust Alternative to Score-Based Regression for AutoML
    Hernan Ceferino Vazquez, Jorge Sánchez, Verónica Bogado, Pucci Romero Tobias
    OpenReveiw –  PDF
  • SmartCal: A Novel Automated Approach to Classifier Probability Calibration
    Mohamed Maher Abdelrahman, Osama Fayez Oun, Youssef Medhat, Mariam Magdy Elseedawy, Yara Mostafa Marei, Abdullah Ibrahim, Radwa Mohamed El Shawi
    OpenReview   PDF YouTube
  • Exploring One Million Machine Learning Pipelines: A Benchmarking Study
    Edesio Alcobaça, Andre Carlos Ponce de Leon Ferreira De Carvalho
    OpenReview –  PDF


Papers marked with 🛜 will be presented online only in the virtual post-conference gathering.

Methods Track

  • PiML: Automated Machine Learning Workflow Optimisation using LLM Agents
    Abhishek Chopde , Fardeen Pettiwala, Sankar Kirubananth, Sai Kiran Botla, Pachipulusu Ayyappa Kethan
    OpenReviewPDF
  • Feasibility-Driven Trust Region Bayesian Optimization
    Paolo Ascia, Elena Raponi, Thomas Bäck, Duddeck
    OpenReviewPDF
  • Iterative Monte Carlo Tree Search for Neural Architecture Search
    Mehraveh Javan Roshtkhari, Matthew Toews, Marco Pedersoli
    OpenReviewPDF
  • Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
    Timur Carstensen, Neeratyoy Mallik, Frank Hutter, Martin Rapp
    OpenReviewPDF
  • Fast Bayesian Optimization of Function Networks with Partial Evaluations
    Poompol Buathong, Peter I. Frazier
    OpenReviewPDF
  • syftr: Pareto-Optimal Generative AI
    Alexander Conway, Debadeepta Dey, Stefan Hackmann, Matthew Hausknecht, Michael Douglas Schmidt, Mark Lewis Steadman, Nick Volynets
    OpenReviewPDF – YouTube
  • 🛜 The Ranking Trick: A Simple and Robust Alternative to Score-Based Regression for AutoML
    Hernan Ceferino Vazquez, Jorge Sánchez, Verónica Bogado, Pucci Romero Tobias
    OpenReviewPDF
  • Regularized Neural Ensemblers
    Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka
    OpenReviewPDF
  • What Makes Freezing Layers in Deep Neural Networks Effective? A Linear Separability Perspective
    Collin Coil, Nick Cheney
    OpenReviewPDF – YouTube
  • 🛜 EG-ENAS: Efficient and Generalizable Evolutionary Neural Architecture Search for Image Classification
    Mateo Avila Pava, René Groh, Andreas M Kist
    OpenReviewPDF –  YouTube
  • Hyperparameter Optimization via Interacting with Probabilistic Circuits
    Jonas Seng, Fabrizio Ventola, Zhongjie Yu, Kristian Kersting
    OpenReviewPDF
  • 🛜 SmartCal: A Novel Automated Approach to Classifier Probability Calibration
    Mohamed Maher Abdelrahman, Osama Fayez Oun, Youssef Medhat, Mariam Magdy Elseedawy, Yara Mostafa Marei, Abdullah Ibrahim, Radwa Mohamed El Shawi
    OpenReviewPDF  – YouTube
  • AutoPDL: Automatic Prompt Optimization for LLM Agents
    Claudio Spiess, Mandana Vaziri, Louis Mandel, Martin Hirzel
    OpenReviewPDF
  • Obeying the Order: Introducing Ordered Transfer Hyperparameter Optimization
    Sigrid Passano Hellan, Huibin Shen, Francois-Xavier Aubet, David Salinas, Aaron Klein
    OpenReviewPDF
  • Multi-layer Stack Ensembles for Time Series Forecasting
    Nathanael Bosch, Oleksandr Shchur, Nick Erickson, Michael Bohlke-Schneider, Ali Caner Turkmen
    OpenReviewPDF
  • Transferrable Surrogates in Expressive Neural Architecture Search Spaces
    Shiwen Qin, Gabriela Kadlecová, Martin Pilát, Shay B Cohen, Roman Neruda, Elliot J. Crowley, Jovita Lukasik, Linus Ericsson
    OpenReviewPDF
  • 🛜 Overtuning in Hyperparameter Optimization
    Lennart Schneider, Bernd Bischl, Matthias Feurer
    OpenReviewPDF
  • CAPO: Cost-Aware Prompt Optimization
    Tom Zehle, Moritz Schlager, Timo Heiß, Matthias Feurer
    OpenReviewPDF –  YouTube
  • Revisiting Learning Rate Control
    Micha Henheik, Theresa Eimer, Marius Lindauer
    OpenReviewPDF


ABCD Track

  • confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
    Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
    OpenReviewPDF
  • Ax: A Platform for Adaptive Experimentation
    Miles Olson, Elizabeth Santorella, Louis C. Tiao, Sait Cakmak, Mia Garrard, Samuel Daulton, Zhiyuan Jerry Lin, Sebastian Ament, Bernard Beckerman, Eric Onofrey, Paschal Igusti, Cristian Lara, Benjamin Letham, Cesar Cardoso, Shiyun Sunny Shen, Andy Chenyuan Lin, Matthew Grange, Elena Kashtelyan, David Eriksson, Maximilian Balandat, Eytan Bakshy
    OpenReview
    PDF
  • 🛜 Exploring One Million Machine Learning Pipelines: A Benchmarking Study
    Edesio Alcobaça, Andre Carlos Ponce de Leon Ferreira De Carvalho
    OpenReviewPDF
  • 🛜 AutoML Algorithms for Online Generalized Additive Model Selection: Application to Electricity Demand Forecasting
    Keshav Das, Julie Keisler, Margaux Brégère, Amaury Durand
    OpenReviewPDF
  • CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
    Jacob O Tørring, Carl Hvarfner, Luigi Nardi, Magnus Själander
    OpenReview
    PDF
  • Auto-nnU-Net: Towards Automated Medical Image Segmentation
    Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer
    OpenReviewPDF