For information about the CAFE Workshop please checkout  https://peter-i-frazier.github.io/cafe-workshop-website/

The tutorials and the workshop are held in rooms 315 and 325

Industry Day

Talks:

  • OpenEuroLLM – Aaron Klein
  • Distil Labs – Jancek Golebiowski
  • DataRobot – Mark Steadman
  • Meta – Eytan Bakshy 

The panel on Automating Data Science will be moderated by Peter Frazier with panelist Frank Hutter (PriorLabs), Chris Oshiro (AtScale) and a representative from DataRobot.

Keynotes

Monday
  • Manuela Veloso
    Humans and AI and GenAI: The Journey
  • Kevin Leyton-Brown
    Practical, Utilitarian Algorithm Configuration
Tuesday
  • Juliana Freire
    Beyond Automation: The Future of AutoML is Human and Data Centered
  • Erin Ledell
    Automated Evaluation of LLM Applications


Wednesday
  • Andrew Gordon Wilson
    Prescriptions for Universal Learning
  • Atlas Wang
    Auto-Differentiate Any LLM Workflow

Presentation Schedule

Session I (Monday)
  • AutoPDL: Automatic Prompt Optimization for LLM Agents
    Claudio Spiess, Mandana Vaziri, Louis Mandel, Martin Hirzel
    OpenReview –  PDF
  • Hyperparameter Optimization via Interacting with Probabilistic Circuits
    Jonas Seng, Fabrizio Ventola, Zhongjie Yu, Kristian Kersting
    OpenReview –  PDF
  • Feasibility-Driven Trust Region Bayesian Optimization
    Paolo Ascia, Elena Raponi, Thomas Bäck, Duddeck
    OpenReview –  PDF
  • Transferrable Surrogates in Expressive Neural Architecture Search Spaces
    Shiwen Qin, Gabriela Kadlecová, Martin Pilát, Shay B Cohen, Roman Neruda, Elliot J. Crowley, Jovita Lukasik, Linus Ericsson
    OpenReview –  PDF


Session II (Tuesday)
  • CAPO: Cost-Aware Prompt Optimization
    Tom Zehle, Moritz Schlager, Timo Heiß, Matthias Feurer
    OpenReview –  PDF –  YouTube
  • Fast Bayesian Optimization of Function Networks with Partial Evaluations
    Poompol Buathong, Peter I. Frazier
    OpenReview –  PDF
  • CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
    Jacob O Tørring, Carl Hvarfner, Luigi Nardi, Magnus Själander
    OpenReview
     –  PDF


Session III (Tuesday)
  • Obeying the Order: Introducing Ordered Transfer Hyperparameter Optimization
    Sigrid Passano Hellan, Huibin Shen, Francois-Xavier Aubet, David Salinas, Aaron Klein
    OpenReview –  PDF
  • Iterative Monte Carlo Tree Search for Neural Architecture Search
    Mehraveh Javan Roshtkhari, Matthew Toews, Marco Pedersoli
    OpenReview –  PDF
  • Ax: A Platform for Adaptive Experimentation
    Miles Olson, Elizabeth Santorella, Louis C. Tiao, Sait Cakmak, Mia Garrard, Samuel Daulton, Zhiyuan Jerry Lin, Sebastian Ament, Bernard Beckerman, Eric Onofrey, Paschal Igusti, Cristian Lara, Benjamin Letham, Cesar Cardoso, Shiyun Sunny Shen, Andy Chenyuan Lin, Matthew Grange, Elena Kashtelyan, David Eriksson, Maximilian Balandat, Eytan Bakshy
    OpenReview
     –  PDF
  • syftr: Pareto-Optimal Generative AI
    Alexander Conway, Debadeepta Dey, Stefan Hackmann, Matthew Hausknecht, Michael Douglas Schmidt, Mark Lewis Steadman, Nick Volynets
    OpenReview –  PDF – YouTube


Session IV (Wednesday)
  • confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
    Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
    OpenReview –  PDF
  • PiML: Automated Machine Learning Workflow Optimisation using LLM Agents
    Abhishek Chopde , Fardeen Pettiwala, Sankar Kirubananth, Sai Kiran Botla, Pachipulusu Ayyappa Kethan
    OpenReview –  PDF
  • What Makes Freezing Layers in Deep Neural Networks Effective? A Linear Separability Perspective
    Collin Coil, Nick Cheney
    OpenReview –  PDF – YouTube
Session V (Wednesday)
  • Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
    Timur Carstensen, Neeratyoy Mallik, Frank Hutter, Martin Rapp
    OpenReview –  PDF
  • Multi-layer Stack Ensembles for Time Series Forecasting
    Nathanael Bosch, Oleksandr Shchur, Nick Erickson, Michael Bohlke-Schneider, Ali Caner Turkmen
    OpenReview –  PDF
  • Revisiting Learning Rate Control
    Micha Henheik, Theresa Eimer, Marius Lindauer
    OpenReview –  PDF
  • Regularized Neural Ensemblers
    Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka
    OpenReview –  PDF
  • Auto-nnU-Net: Towards Automated Medical Image Segmentation
    Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer
    OpenReveiw –  PDF
Online Only (25th September 8:00 – 12:00 EST)

For information about the online post-conference gathering please checkout this page.

  • AutoML Algorithms for Online Generalized Additive Model Selection: Application to Electricity Demand Forecasting
    Keshav Das, Julie Keisler, Margaux Brégère, Amaury Durand
    OpenReview –  PDF
  • Overtuning in Hyperparameter Optimization
    Lennart Schneider, Bernd Bischl, Matthias Feurer
    OpenReview –  PDF
  • EG-ENAS: Efficient and Generalizable Evolutionary Neural Architecture Search for Image Classification
    Mateo Avila Pava, René Groh, Andreas M Kist
    OpenReview –  PDF –  YouTube
  • The Ranking Trick: A Simple and Robust Alternative to Score-Based Regression for AutoML
    Hernan Ceferino Vazquez, Jorge Sánchez, Verónica Bogado, Pucci Romero Tobias
    OpenReveiw –  PDF
  • SmartCal: A Novel Automated Approach to Classifier Probability Calibration
    Mohamed Maher Abdelrahman, Osama Fayez Oun, Youssef Medhat, Mariam Magdy Elseedawy, Yara Mostafa Marei, Abdullah Ibrahim, Radwa Mohamed El Shawi
    OpenReview –  PDF – YouTube
  • Exploring One Million Machine Learning Pipelines: A Benchmarking Study
    Edesio Alcobaça, Andre Carlos Ponce de Leon Ferreira De Carvalho
    OpenReview –  PDF


Poster Schedule

Tuesday

All papers from sessions I – III will present a poster in this slot. Additionally the following non-archival content will be presented:

  • MetaARIMA: Automatic Configuration of ARIMA using Classifier Chains
  • Quickly Tuning Foundation Models for Image Segmentation
  • A Preliminary Evaluation of Large Language Models for Data Science Code Generation
  • Cost-aware Stopping for Bayesian Optimization
  • Stitching Disparate Neural Network Layers with Complex Adapters and Spatial Rescaling
  • Successive Halving with Learning Curve Prediction via Latent Kronecker Gaussian Processes
  • Improved Gaussian Process Hyperparameter Fitting for Bayesian Optimization
  • LISTEN to Your Preferences: An LLM Framework for Multi-Objective Selection
  • Cost-aware Bayesian Optimization via the Pandora’s Box Gittins Index
Wednesday

All papers from Sessions IV & V will present a poster in this slot. Additionally the following non-archival content will be presented:

  • Quantifying Module Interactions in the PSO-X Framework
  • Bayesian Optimisation Against Climate Change: Applications and Benchmarks
  • Zero-Cost Benchmarks: Towards Lower Reliance on Spearman Rank Correlation
  • Stress Testing Classifiers around the Decision Boundary with Latent Diffusion
  • The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
  • Tune My Adam, Please!
  • Algorithm Configuration for Structured Pfaffian Settings
  • Multi-objective Hyperparameter Optimization in the Age of Deep Learning
  • How Usable is Automated Feature Engineering for Tabular Data?
  • Automated Data Preparation for Machine Learning
  • Surrogate Benchmarks for Model Merging Optimization
  • ParticleML: AutoML Through Electromagnetic Physics Simulation
  • Prometheus: A Recursively Self-Improving NAS System
  • Data-Efficient Ranking of Recommendation Models
  • Object-Flow Machine Learning: Active learning framework utilizing protocols information
Online Only (September 25th, 8:00 – 12:00 EST)

All papers that could not be presented in person will be presented online at the post-conference gathering. Additionally the following non-archival content will be presented there as well.
For information about the online post-conference gathering please checkout  this page.

  • ReLU is all you need for NASWOT
  • Towards Exploiting Early Termination for Multi-Fidelity Hyperparameter Optimization
  • Towards Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization

Tutorials